首页> 外文OA文献 >Robust Multilingual Named Entity Recognition with Shallow Semi-Supervised Features
【2h】

Robust Multilingual Named Entity Recognition with Shallow Semi-Supervised Features

机译:具有浅层的鲁棒多语名称实体识别   半监督功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a multilingual Named Entity Recognition approach based on a robustand general set of features across languages and datasets. Our system combinesshallow local information with clustering semi-supervised features induced onlarge amounts of unlabeled text. Understanding via empirical experimentationhow to effectively combine various types of clustering features allows us toseamlessly export our system to other datasets and languages. The result is asimple but highly competitive system which obtains state of the art resultsacross five languages and twelve datasets. The results are reported on standardshared task evaluation data such as CoNLL for English, Spanish and Dutch.Furthermore, and despite the lack of linguistically motivated features, we alsoreport best results for languages such as Basque and German. In addition, wedemonstrate that our method also obtains very competitive results even when theamount of supervised data is cut by half, alleviating the dependency onmanually annotated data. Finally, the results show that our emphasis onclustering features is crucial to develop robust out-of-domain models. Thesystem and models are freely available to facilitate its use and guarantee thereproducibility of results.
机译:我们提出了一种基于多种语言和数据集的功能强大且通用的多语言命名实体识别方法。我们的系统将浅薄的本地信息与在大量未标记文本上引起的聚类半监督特征结合在一起。通过经验实验了解如何有效地组合各种类型的聚类特征,使我们能够无缝地将系统导出到其他数据集和语言。结果是一个简单但竞争激烈的系统,该系统可跨五种语言和十二个数据集获得最新的结果。结果报告在标准任务评估数据上,例如英语,西班牙语和荷兰语的CoNLL。此外,尽管缺乏语言动机的功能,我们还报告了巴斯克语和德语等语言的最佳结果。另外,证明了即使将监督数据量减少一半,我们的方法也能获得非常有竞争力的结果,从而减轻了对人工注释数据的依赖性。最后,结果表明,我们对集群功能的重视对于开发健壮的域外模型至关重要。该系统和模型是免费提供的,以方便其使用并保证结果的可重复性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号